Welcome to Python-flavored Magnum! Please note that, while already being rather stable, this functionality is still considered experimental and some APIs might get changed without preserving full backwards compatibility.

magnum.Matrix3d class

2D double transformation matrix

Static methods

def translation(vector: Vector2d) -> Matrix3d
2D translation matrix
def from_(rotation_scaling: Matrix2x2d, translation: Vector2d) -> Matrix3d
Create a matrix from a rotation/scaling part and a translation part
def from_diagonal(diagonal: Vector3d) -> Matrix3d
Construct a diagonal matrix
def identity_init(value: float = 1.0) -> Matrix3d
Construct an identity matrix
def projection(size: Vector2d) -> Matrix3d
2D projection matrix
def projection(bottom_left: Vector2d, top_right: Vector2d) -> Matrix3d
2D off-center projection matrix
def reflection(normal: Vector2d) -> Matrix3d
2D reflection matrix
def rotation(angle: Rad) -> Matrix3d
2D rotation matrix
def scaling(vector: Vector2d) -> Matrix3d
2D scaling matrix
def shearing_x(amount: float) -> Matrix3d
2D shearing matrix along the X axis
def shearing_y(amount: float) -> Matrix3d
2D shearning matrix along the Y axis
def zero_init() -> Matrix3d
Construct a zero-filled matrix

Methods

def adjugate(self, /) -> Matrix3d
Adjugate matrix
def cofactor(self, col: int, row: int) -> float
Cofactor
def comatrix(self, /) -> Matrix3d
Matrix of cofactors
def determinant(self, /) -> float
Determinant
def diagonal(self, /) -> Vector3d
Values on diagonal
def flipped_cols(self, /) -> Matrix3d
Matrix with flipped cols
def flipped_rows(self, /) -> Matrix3d
Matrix with flipped rows
def inverted(self, /) -> Matrix3d
Inverted matrix
def inverted_orthogonal(self, /) -> Matrix3d
Inverted orthogonal matrix
def inverted_rigid(self, /) -> Matrix3d
Inverted rigid transformation matrix
def is_orthogonal(self, /) -> bool
Whether the matrix is orthogonal
def is_rigid_transformation(self, /) -> bool
Check whether the matrix represents a rigid transformation
def rotation(self, /) -> Matrix2x2d
2D rotation part of the matrix
def rotation_normalized(self, /) -> Matrix2x2d
2D rotation part of the matrix assuming there is no scaling
def rotation_scaling(self, /) -> Matrix2x2d
2D rotation and scaling part of the matrix
def rotation_shear(self, /) -> Matrix2x2d
2D rotation and shear part of the matrix
def scaling(self, /) -> Vector2d
Non-uniform scaling part of the matrix
def scaling_squared(self, /) -> Vector2d
Non-uniform scaling part of the matrix, squared
def trace(self, /) -> float
Trace of the matrix
def transform_point(self, vector: Vector2d) -> Vector2d
Transform a 2D point with the matrix
def transform_vector(self, vector: Vector2d) -> Vector2d
Transform a 2D vector with the matrix
def transposed(self, /) -> Matrix3d
Transposed matrix
def uniform_scaling(self, /) -> float
Uniform scaling part of the matrix
def uniform_scaling_squared(self, /) -> float
Uniform scaling part of the matrix, squared

Special methods

def __add__(self, arg0: Matrix3d, /) -> Matrix3d
Add a matrix
def __buffer__(self, flags, /)
Return a buffer object that exposes the underlying memory of the object.
def __eq__(self, arg0: Matrix3x3d, /) -> bool
Equality comparison
def __getitem__(self, arg0: int, /) -> Vector3d
Column at given position
def __getitem__(self, arg0: tuple[int, int], /) -> float
Value at given col/row
def __getstate__(self, /) -> bytes
Dumps the in-memory representation of matrix components
def __iadd__(self, arg0: Matrix3d, /) -> Matrix3d
Add and assign a matrix
def __imul__(self, arg0: float, /) -> Matrix3d
Multiply with a scalar and assign
def __init__(self, arg0: Matrix3, /) -> None
Construct from different underlying type
def __init__(self, arg0: Buffer, /) -> None
Construct from a buffer
def __init__(self, /) -> None
Default constructor
def __init__(self, arg0: float, /) -> None
Construct a matrix with one value for all components
def __init__(self, arg0: Vector3d, arg1: Vector3d, arg2: Vector3d, /) -> None
Construct from column vectors
def __init__(self, arg0: tuple[Vector3d, Vector3d, Vector3d], /) -> None
Construct from a column vector tuple
def __init__(self, arg0: tuple[tuple[float, float, float], tuple[float, float, float], tuple[float, float, float]], /) -> None
Construct from a column tuple
def __isub__(self, arg0: Matrix3d, /) -> Matrix3d
Subtract and assign a matrix
def __itruediv__(self, arg0: float, /) -> Matrix3d
Divide with a scalar and assign
def __len__() -> int
Matrix column count. Returns 3.
def __matmul__(self, arg0: Matrix3d, /) -> Matrix3d
Multiply a matrix
def __mul__(self, arg0: float, /) -> Matrix3d
Multiply with a scalar
def __mul__(self, arg0: Vector3d, /) -> Vector3d
Multiply a vector
def __ne__(self, arg0: Matrix3x3d, /) -> bool
Non-equality comparison
def __neg__(self, /) -> Matrix3d
Negated matrix
def __release_buffer__(self, buffer, /)
Release the buffer object that exposes the underlying memory of the object.
def __repr__(self, /) -> str
Object representation
def __rmul__(self, arg0: float, /) -> Matrix3d
Multiply a scalar with a matrix
def __rtruediv__(self, arg0: float, /) -> Matrix3d
Divide a matrix with a scalar and invert
def __setitem__(self, arg0: int, arg1: Vector3d, /) -> None
Set a column at given position
def __setitem__(self, arg0: tuple[int, int], arg1: float, /) -> None
Set a value at given col/row
def __setstate__(self, arg0: bytes, /) -> None
Treats the data as the in-memory representation of matrix components
def __sub__(self, arg0: Matrix3d, /) -> Matrix3d
Subtract a matrix
def __truediv__(self, arg0: float, /) -> Matrix3d
Divide with a scalar

Properties

Right-pointing 2D vector
translation: Vector2d get set
2D translation part of the matrix
up: Vector2d get set
Up-pointing 2D vector

Method documentation

def magnum.Matrix3d.reflection(normal: Vector2d) -> Matrix3d staticmethod

2D reflection matrix

Exceptions
ValueError If normal is not normalized

def magnum.Matrix3d.inverted_orthogonal(self, /) -> Matrix3d

Inverted orthogonal matrix

Exceptions
ValueError If the matrix is not orthogonal

def magnum.Matrix3d.inverted_rigid(self, /) -> Matrix3d

Inverted rigid transformation matrix

Exceptions
ValueError If the matrix doesn’t represent a rigid transformation

def magnum.Matrix3d.rotation(self, /) -> Matrix2x2d

2D rotation part of the matrix

Exceptions
ValueError If the normalized rotation part is not orthogonal

def magnum.Matrix3d.rotation_normalized(self, /) -> Matrix2x2d

2D rotation part of the matrix assuming there is no scaling

Exceptions
ValueError If the rotation part is not orthogonal

def magnum.Matrix3d.uniform_scaling(self, /) -> float

Uniform scaling part of the matrix

Exceptions
ValueError If the matrix doesn’t have uniform scaling

def magnum.Matrix3d.uniform_scaling_squared(self, /) -> float

Uniform scaling part of the matrix, squared

Exceptions
ValueError If the matrix doesn’t have uniform scaling

def magnum.Matrix3d.__setstate__(self, arg0: bytes, /) -> None

Treats the data as the in-memory representation of matrix components

Exceptions
ValueError If the data size doesn’t match type size